File Name:Bosch Multiplexer Manual.pdf
ENTER SITE »»» DOWNLOAD PDF
CLICK HERE »»» BOOK READER
Size: 4365 KB
Type: PDF, ePub, eBook
Uploaded: 4 May 2019, 23:26
Rating: 4.6/5 from 707 votes.
tatus: AVAILABLE
Last checked: 11 Minutes ago!
eBook includes PDF, ePub and Kindle version
In order to read or download Bosch Multiplexer Manual ebook, you need to create a FREE account.
✔ Register a free 1 month Trial Account.
✔ Download as many books as you like (Personal use)
✔ Cancel the membership at any time if not satisfied.
✔ Join Over 80000 Happy Readers
This protocol (for detection of the camera number) is required to view images via the web software (DVR1C only) and to make movie files on the compact flash card. Multiplexer table The following table lists multiplexer brands that are tested and been found to be compatible with the DVR1A and DVR1C digital video recorders: Manufacturer Model. Therefore always switch off the system before a camera or accessory is added or removed. After power up the system moni- tor will recognize the item that was added or removed.Daarom moet u het systeem altijd uitschakelen voordat er een camera of accessoire wordt toegevoegd of verwi- jderd. Na het inschakelen detecteert de systeemmonitor of er een item is toegevoegd of verwijderd. Quindi spegnere sempre il sistema prima di installare o rimuovere telecamere od acces- sori. All'accensione il monitor di sistema procede al rilevamento dei componenti aggiunti o rimossi.Etter oppstart registrerer systemmonitoren utstyret som ble lagt til eller fjernet. These units An on-screen programming menu To enhance the There are two modes of the activity All units are compatible with. Randy Smith of Winsted still sees many control rooms that need to make the conversion, which is a boon to his company’s business. Furniture today is designed differently to accommodate the thinner monitors, often with larger screens. Need for integrated rack systems. With the increase of IP-based systems comes the need for integrated rack systems that include advanced functionality such as cable management, adds Jim Coleman, National Sales Manager, AFC Industries. Server rooms are environmentally controlled by cooling systems and power systems monitored on the IP network. Low-profile flat screens allow centres to utilise space vertically, thus creating a smaller footprint for the consoles. Additionally, with IP-based systems, workstations will have a smaller footprint because there is less cumbersome equipment. http://fillyourplate.org/upload/3m-x62w-manual.xml
bosch video multiplexer manual, bosch multiplexer manual, bosch multiplexer manual pdf, bosch multiplexer manual download, bosch multiplexer manual diagram, bosch multiplexer manual instructions.
In most cases the servers are stored in a secured, climate controlled environment to eliminate overheating of the servers and maintain their security, says Coleman. This environment also helps with cable and power management. AFC builds technical furniture racks that adhere to the precise needs of computer network server room operators. The company designs and fabricates LAN workbenches with versatile functionalities, and server room workstation racks that are scalable. There is a complete line of IT workbenches, IT computer racks and computer server rack mounts with flexible mounting options. In most cases the servers are stored in a secured, climate controlled environment to eliminate overheating of the servers and maintain their security. Flexible control room designs. Matko Papic, Chief Technology Officer of Evans Consoles, says the transition from bulky CRT equipment to flat-screen (lower profile) monitors was a major disruption in control room design; it changed the whole dynamic. Another evolution is the use of IP video streaming, which allows more flexibility in manipulation of audio-video content, and requires more flexible control room designs. Another shift, driven by larger, higher-definition monitors, is a shift to fewer monitors that display more information. Instead of a smaller monitor for each information stream, larger monitors now consolidate that information into “dashboard” displays. Looking ahead, control rooms will need to be more flexible, both in the initial design and the ability to adapt to changing technology, says Papic. Legacy customers who are currently using PCs may be moving to more remote applications. Sit-stand equipment will continue to be increasingly prevalent. “There will be more emphasis on flexibility, technology integration, and the ability to change over the life of the system,” says Papic. Consolidation of multiple operations into a single system. http://www.kmbb.at/userfiles/3m-x50-projector-manual.xml
A trend in security is consolidation of multiple physical operations into a single system, says Papic. As a result, more customers are taking more interest in alarm management and situational awareness. How is the technology being used in terms of alarm triggers. How can the systems react rapidly and provide information to a larger audience in the control room. These questions impact how control rooms are designed, and Evans Consoles can adapt lessons learned from other markets to these trends in the security arena. Greater use of technology is inevitable, says Coleman of AFC Industries. “It is virtually impossible for humans to monitor all security data at the street level in our cities,” he says. “As computers become more powerful and their programs more all-encompassing, we will see a greater shift to robotic and technology uses that will provide enhanced monitoring capabilities and safety. Read our Control Rooms series here Determining the power requirements of every systems product, taking into account their integration with one another is critical to ensure that you are selecting and installing the power solutions most appropriate for your installation. Such information will enable you to select the power supplies that will be required to keep your security system running efficiently in the long run. It's imperative that you check with the local AHJ (Authority Having Jurisdiction) to find out what agency listings you must conform to during the design process to assure your security system is in compliance before installing any components and power supplies. Features required: What are the application specific features required for the installation. Selecting power supplies for a security or fire alarm system is a complex process due to a number of variables Before starting the design process, a comprehensive analysis of the facility's security systems are required to determine feature sets of the power supplies. http://www.drupalitalia.org/node/68240
Up until recently, selecting power supplies often required the need to combine various components to deliver the functionality desired. For example, does the system need battery back-up in case of a power failure. All that has changed with the introduction of a new breed of integrated power solutions that deliver both cost and installation advantages. Quantity, location and power requirements of the security system componentsWhat is the number of devices in the system, the power requirements for each, and their physical location?This information is necessary to determine the size and quantity of the power supplies, how many security devices they will run, and where they will be physically located. It is always a good rule of thumb to add 20 more power to your calculations as a safety factor. Alarm signal generation is a key consideration when dealing with power consumption in fire alarms systems Dealing with power consumption issues in fire alarm systems Power consumption is a primary issue when configuring fire alarm systems. One of the most critical considerations revolves around how alarm signals are activated. When an alarm condition exists, Notification Appliance Circuits (NAC) are output from the Fire Alarm Control Panel (FACP) to activate notification appliances such as strobes and horns commonly used to indicate an emergency situation. The number of notification appliances to be activated, along with the current draw for each device and its distance from the FACP, sometimes makes the deployment of NAC Power Extenders a necessary system component. For example, in large commercial installations or multi-tenant buildings, the total current draw of the notification appliances may well exceed the power output of the FACP. In these instances, one or more NAC Power Extenders need to be installed for those notification appliances where the wire runs are too long for the FACP to deliver sufficient power. http://www.federicocastelnovo.com/images/bosch-motronic-ecu-manual.pdf
Power supply requirements for access control systems - key standards to follow To ensure safety any device designated to lock or unlock an exit must be connected to the fire alarm systemAccess control systems manage entry and exit points at a facility by means of controlled locking devices. NFPA (National Fire Protection Association) requires that any device or system intended to actuate the locking or unlocking of exits, must be connected to the facility's fire alarm system so that all doors will release when an alarm signal is generated.To comply with NFPA requirements, there are two classifications of locking devices that need to be addressed: Fail-Safe and Fail-Secure. Fail-Safe locking devices such as magnetic locks release when they lose power. Fail-Secure locking devices such as electric strikes unlock when power is applied and may be manually released from inside a secured area. This determines the manner in which your power solution removes or provides power and the sequence and timing of each action.Access control power supplies come in both AC and DC versions and some provide multiple voltages simultaneously. Wall and rack mount models are also available.To comply with NFPA requirements, there are two classifications of locking devices that need to be addressed: Fail-Safe and Fail-Secure Some systems may also require the installation of panic hardware devices. Upon activation, the devices' high current power demand can reach up to 16amps, but not all power supplies can handle these high inrush currents. As a result, you need to specify a power supply designed for this type of application. Some operate a single panic hardware device and require optional modules to add features like timing functions, output relays, fire alarm disconnect, or power for additional panic hardware devices. More advanced models offer integrated features and supply a comprehensive solution. http://www.holderit.com/wp-content/plugins/formcraft/file-upload/server/content/files/1626ecc9805b9a---bosch-nexxt-500-plus-washer-manual.pdf
In addition to the convenience of these integrated devices, they are highly cost efficient with respect to total cost of ownership and installation. These video power supplies need to deliver a clean and consistent source of 24VAC or 12VDC power to assure uninterrupted operation. Depending on the video component's specific power requirements and its location, there is a wide selection of power supplies to select from. They can be wall or rack mounted, designed for use indoors or outdoors, and feature AC or DC outputs. Configurations typically range from 1 to 32 outputs and some models offer additional features like 115 or 230VAC input with current ratings as high as 25 amps, power LED indicators, and PTC or fused protected outputs. Certain models provide both 24VAC and 12VDC to power both types of surveillance cameras simultaneously. Environmental conditions can affect the performance of video components and the power supply when situated outdoors A few additional variables to consider when selecting video surveillance power supplies include: Environmental conditions: Temperature differences due to change of seasons, day or night, can often be extreme and can have a direct affect on the performance of both the video components and the power supply when located outdoors. Enclosures for outdoor power supplies should be rated to withstand the elements.Ground Isolation: In some cases, the surveillance cameras are not equipped with internal electrical isolation. Should this be the case, it's important to specify a power supply with this feature. Video Transmission Systems: For years, the use of structured cable has been an inexpensive method for transmitting video and data between head end equipment and camera systems. The introduction of UTP transceiver hubs with integral camera power make it possible to transmit both video and data via structured cable along with the power needed for the cameras. aokman-gearbox.com/d/files/canon-mp250-printer-repair-manual.pdf
New highly versatile devices with integral power provide system designers with a highly integrated solution. This new breed of integrated device greatly reduces the time and expense of configuring and installing separate components while helping to minimize bandwidth requirements for large security systems. Paul RizzutoTechnical Sales Manager Altronix Corp According to a recent survey, 60 of shoppers are afraid of going grocery shopping, with 73 making fewer trips to physical stores. Returning to the workplace is also causing unease, as 66 of employees report feeling uncomfortable about returning to work after COVID-19. Businesses and employers are doing their best to alleviate these fears and create safe environments in and around their buildings. Costs in the billions that most businesses will face alone, without support from insurance and amidst larger macroeconomic challenges. Saving costs and increasing security. But what if building operators, retail shop owners, and other stakeholders could save costs by leveraging new functionality from their existing security infrastructure. This is exactly where video analytics algorithms come into play. And in the next step, a new evolutionary approach towards open security camera platforms promises new opportunities. Security cameras have evolved from mere image capturing devices into complex data sensors. Over the past decade, security cameras have evolved from mere image capturing devices into complex data sensors. They provide valuable data that can be analysed and used in beneficial ways that are becoming the norm. Since 2016, Bosch has offered built-in Video Analytics as standard on all its IP cameras. On one hand, this enables automated detection of security threats more reliably than human operators. And on the other hand, video analytics collect rich metadata to help businesses improve safety, increase efficiency, reduce costs, and create new value beyond security. {-Variable.fc_1_url-
Expanding camera functionality beyond security. The rich metadata from several cameras on the same network can also be consolidated by making use of an intelligent software solution. It offers so-called pre-defined widgets to provide business intelligence by measuring area fill levels, counting building occupancy and detecting the formation of crowds. In combination with live video stream data, these insights enable heightened situational awareness to security operators. These user-centric widgets also come in handy in dealing with the coronavirus pandemic. Specific widgets can trigger an alarm, public announcement or trigger a 'traffic light' when the maximum number of people in a space is exceeded. At the same time, the option to perform remote maintenance on these systems limits the exposure of technicians in the field during the pandemic. Again, the underlying camera hardware and software already exist. For instance, cameras could monitor distances between individuals and trigger voice announcements when social distancing guidelines are violated. Facial recognition software can be trained to monitor personal protective equipment (PPE) compliance and sound alerts for persons entering buildings without masks. The technical requirements are already in place. The task at hand is to deliver these new functionalities to cameras at scale, which is where open camera platforms hold the key. Why open camera operating systems? When it comes to innovating future camera applications that extend beyond security, no hardware manufacturer should go at it alone. Instead, an open platform approach provides the environment for third-party developers to innovate and market new functions. In essence, an open platform principle allows customers and users to change the behavior of devices by adding software afterwards. This software can either be found in an app store or can be self-developed. For a precedent, we can look at the mobile phone industry. https://www.medicalart.com.tr/wp-content/plugins/formcraft/file-upload/server/content/files/1626eccb704862---bosch-nexxt-500-manual.pdf
This is where software ecosystems like Android and Apple’s iOS have become the norm. In the same way, intelligent cameras will be used far beyond classic video applications in the future. To get there, adopting an open platform principle is essential for a genuine transformation on an industry level. But establishing an open platform principle in the fragmented video security industry demands a cooperative approach. With more than 40 members, the Alliance has collectively created the first Technology Stack for “open” video security devices. This includes the OSSA Application Interface Specification and Compliant Device Definition Specification. An open camera platform for innovating future functionality. Based on OSSA’s common APIs, collective approach on data security and core system requirements for video security cameras, the first camera manufacturers were able to build video security cameras that adopt an open platform principle. Further fueling innovation, OSSA focused on driving the creation of one centralised marketplace to unite demand and supply in the market. Camera devices that are built in accordance with OSSA’s Technology Stack, so-called “Driven by OSSA” devices, can benefit from this marketplace which consists of three pillars: a development environment, an application store, and a device management portal. Making it quick and simple to customise security solutions by installing and executing multiple apps. This year, Bosch, as one of the first camera manufacturers, introduces the new INTEOX generation of open platform cameras. To innovate a future beyond security functionality, INTEOX combines built-in Intelligent Video Analytics from Bosch, an open Operating System (OS), and the ability to securely add software apps as needed. anxuetang.com/upload/files/canon-mp250-manuale-italiano.pdf
Thanks to the fully open principle, system integrators are free to add apps available in the application store, making it quick and simple to customise security solutions by installing and executing multiple apps on the INTEOX platform. In turn, app developers can now focus on leveraging the intelligence and valuable data collected by analytics-equipped cameras for their own software developments to introduce new exciting possibilities of applying cameras. These possibilities are needed as smart buildings and IoT-connected technology platforms continue to evolve. And they will provide new answers to dealing with COVID-19. The aforementioned detection of face masks and PPE via facial detection algorithms is just one of manifold scenarios in which new apps could provide valuable functionality. Contact tracing is another field where a combination of access control and video analytics with rich metadata can make all the difference. Overall, open camera platforms open a future where new, complex functionality that can save lives, ensure business continuity and open new business opportunities will arrive via something as simple as a software update. And this is just the beginning. At the same time, these systems must be easy to configure and use. With the introduction of the Access Management System 3.0, Bosch meets all of these requirements. Always available for security. Access Management System 3.0 is designed to be available at all times. Its resilient design includes a Master Access Controller (MAC) as an additional layer of defence between the server and the access controllers. If the server fails, the MAC takes over, ensuring continuous communication across controllers while sharing necessary information from the card readers. In addition, access control functionalities that involve multiple access readers, such as anti-passback and guard tour can continue to perform. The anti-passback functionality is an important feature to ensure a high level of security. It prevents a cardholder from passing a card to another person enabling an unauthorised entry. Guard tour is a safety functionality offered to security guards, which uses access readers as checkpoints along a defined route at specified times. Threat level management. The different threat levels can make all doors open, or all doors blocked, or a mix of open and blocked. Any deviation of sequence or timing causes an alarm in the Access Management System. Immediate notifications to colleagues or first responders increase the safety of security guards. In the rare event that both the Access Management System 3.0 server and the MAC fail, cardholders can still enter and leave areas with their badges because the database is stored directly on the Access Management Controllers (AMCs). Thanks to this offline capability, it is possible to save millions of events even during downtimes, ensuring the continuous availability of the system. Access Management System 3.0 offers up to 15 configurable threat levels such as lockdown, controlled lockdown, or evacuation, which means safety measures can be initiated quickly in critical situations such as fire or security breach. The threat level state is activated by one of three triggers: operator workstation, external contact such as an emergency button, or specially configured “emergency” cards that are presented to a reader. Scalable and future-proof. Users can start small and add extra capacity whenever necessary. The Access Management System 3.0 software can be expanded up to 10,000 doors and 200,000 cardholders. The software is offered in three pre-configured software bundles from medium to large organisations: Lite (max. 144 doors), Plus (max. 512 doors), and Professional (max. 10,000 doors). All bundles support up to 200,000 cardholders. No hardware needs replacing when expanding; users only require software upgrades and possibly additional controllers, readers, and cards. So, increasing the system is also cost-efficient. Together with regular updates to data security enhancements, these features make the system a future-proof investment - suitable for office and government buildings, retail environments, educational institutions, and more. Easy configuration and operation. Access Management System 3.0 also has trusted digital certificates for mutual authenticationConfiguration is easy: Users can import existing floor maps into the system, and drag and drop icons on the map to represent controllers, doors, and building objects. User onboarding is straightforward. For example, enrolment and assignment of access profiles are all implemented in one dialogue manager. Operation is smooth: The graphical user interface (GUI) is simple and easy to understand. The dark colour scheme of the GUI reduces eye-strain and fatigue, so operators stay fresh and alert. Access Management System 3.0 offers protection against cybercrime and loss of personal data. The database, as well as the communication between the server and access controllers, is encrypted at all stages through the support of the secure Open Supervised Device Protocol (OSDP) v2 protocol. Access Management System 3.0 also has trusted digital certificates for mutual authentication between the server and client to prevent tampering by unauthorised clients and uses secure design principles such as “secure-by-default” and “principle of least privilege.”. Integration with third-party solutions. Access Management System 3.0 is ideal as a standalone solution to meet today’s access control needs. It integrates seamlessly with Bosch B Series and G Series intrusion control panels as well as with video systems such as Bosch Video Management System or third-party systems like Milestone’s XProtect for increased security and enhanced situational awareness. The integrated command and control functionality enables operators to arm and disarm intrusion panels directlyIntegration with Bosch Video Management System (version 10. 1 and higher) offers manual video verification to increase the security level at doors. The operator can visually verify whether the person at the door matches the registered person in the database. If so, the operator allows the person to enter. Bosch Video Management System integration also enables searching for cardholder events and events at doors. With the searching functionality, it is possible to quickly check who has entered an area and at what time. Moreover, access commands and events can be handled in Bosch Video Management System, making the operation of the integrated system most efficient. Intrusion control panels integration. B and G Series intrusion control panels integrate seamlessly into Access Management System 3.0 for efficient authorisation management and a central overview of all access and intrusion events. With central user management, operators can add, delete, and modify intrusion-related user passcodes and authorisations directly into the system, as well as organise users by groups or functionalities. The integrated command and control functionality enables operators to arm and disarm intrusion panels directly in the Access Management System 3.0 user interface as well as to see states of the areas (e.g. “armed”, “ready to arm”) and detectors (e.g. “motion detected”) on the system map. This provides operators with a central overview of all access and intrusion states, allowing them to easily and remotely handle intrusion events. Bosch Access Management System 3.0 is available for sale and makes access management simple, scalable, and always available. Consistency across video security devices. The OSSA-orchestrated ecosystem is designed to enhance trust, and to enable innovation and opportunity for industry stakeholders and customers. The initiative is anchored by OSSA’s first Technology Stack, which describes the fundamental thoughts on how to create harmony across video security devices to enhance trust and enable innovation. Under the umbrella of this guiding document, and further solidifying it, the Alliance is now launching the first two in a series of technical specifications, being. OSSA Application Interface Specification. This technical specification (available to OSSA members only) defines a set of four interfaces which collectively enable third-party software applications to run on video security cameras following the Technology Stack. The input stream describes the video frames and messages the applications can subscribe to. The web API describes how applications can make use of the camera’s webserver to support, configuration and data upload to the application. The system APIs provide system information regarding OS version, capabilities and information about the video security camera. This is needed to understand the features and APIs that are available on the cameras to make use of device-specific functionality. The streaming application model allows applications to interact with each other. Apps can share their results, such as events and scene descriptions, with other apps on the device or (video management) software in the network. OSSA Compliant Device Definition Specification. This technical specification sets the core system requirements for video security cameras following the OSSA Technology Stack to provide a basis of trust and for app interoperability across vendors. This spec is publicly available. The First “Driven by OSSA” Commercial Cameras. Camera manufacturers have started to introduce to the market, devices designed to reduce fragmentation and orchestrate harmony within an open ecosystem for the surveillance industry. The first commercially available products based on the specifications set forth by the Alliance, OSSA will receive a signage mark for video security cameras. Companies that use this “Driven by OSSA” signage. Are full OSSA members; have signed the OSSA by-laws guiding amongst other things minimum requirements regarding data security and privacy protection. Follow the OSSA Technology Stack for video security devices that prescribes the use of an open operating system (OS). Ensure seamless connectivity within one centralised digital marketplace. Offer the ability to install and execute third-party apps on their cameras. One Centralised Digital Marketplace. OSSA is driving the creation of one centralised marketplace to unite demand and supply in the market. Camera devices that are built in accordance with OSSA’s Technology Stack, so-called “Driven by OSSA” devices, can benefit from this marketplace which consists of (1) a development environment (2) an application store and (3) a device management portal. System integrators, using the application store, can deploy available apps across devices, in a brand independent manner, to meet specific customer requirements. App developers will find in the development environment comprehensive tools, documentation and libraries to develop new software applications. These new apps can then be offered for sale through the application store.View technical specifications, compare products, download datasheets and contact the manufacturer to make sales inquiries. We also use cookies to improve your online experience, Cookie Policy. It also allows simultaneous recording and playback and live viewing multi-screen. Camera images can be monitored in full screen, quad or multi-screen mode with advanced circuitry and expanded memory ensuring optimum picture quality in all modes. This unit offers both manual and auto switching with programmable, sequential dwell times for each camera. Setup and operation is quick and easy using an operator-friendly, on-screen display with front panel controls and multi-language support. This is the ability to simultaneously record and view multi-screen images on both monitors.
- Войдите или зарегистрируйтесь, чтобы оставлять комментарии